.0 Introduction Artificial Dendritic Trees
نویسنده
چکیده
Abstract The electronic architecture and dynamic signal processing capabilities of an artificial dendritic tree which can be used to process and classify dynamic signals is described. The electrical circuit architecture is modeled after neurons that have spatially extensive dendritic trees. The artificial dendritic tree is a hybrid VLSI circuit and is sensitive to both temporal and spatial signal characteristics. It does not use the conventional neural network concept of weights, and as such it does not use multipliers, adders, look-up-tables, microprocessors or other complex computational units to process signals. The weights of conventional neural networks, which take the form of numerical, resistive, voltage, or current values, but do not have any spatial or temporal content, are replaced with connections whose spatial location have both a temporal and scaling significance.
منابع مشابه
Switched-capacitor neuromorphs with wide-range variable dynamics
The use of switched capacitors as wide-range, programmable resistive elements in spatially extensive artificial dendritic trees (ADT's) is described. We show that silicon neuro-morphs with ADT's can produce impulse responses that last millions of times longer than the initiating impulse and that dynamical responses are tunable in both shape and duration over a wide range. The switched-capacitor...
متن کاملAn Inverse Approach for Elucidating Dendritic Function
We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a "hypothesis generator" in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is ...
متن کاملDirectionally Selective Artificial Dendritic Trees
Neurons are continuously bombarded by hundreds or thousands of afferent pulse streams whose impulse responses are integrated by the cell’s active and passive membrane properties, primarily on the dendrites. The nature of the interactions between contemporaneous inputs is critical to the processing capabilities of dendritic trees, which for present purposes we will assume to possess only passive...
متن کاملA brief introduction to Weightless Neural Systems
Mimicking biological neurons by focusing on the excitatory/inhibitory decoding performed by the dendritic trees is a different and attractive alternative to the integrate-and-fire McCullogh-Pitts neuron stylisation. In such alternative analogy, neurons can be seen as a set of RAM nodes addressed by Boolean inputs and producing Boolean outputs. The shortening of the semantic gap between the syna...
متن کاملUniversal features of dendrites through centripetal branch ordering
Dendrites form predominantly binary trees that are exquisitely embedded in the networks of the brain. While neuronal computation is known to depend on the morphology of dendrites, their underlying topological blueprint remains unknown. Here, we used a centripetal branch ordering scheme originally developed to describe river networks-the Horton-Strahler order (SO)-to examine hierarchical relatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001